Microbiological Management of Stem Rot Disease of Groundnut Caused by Scientium rolfsii Sacc., by Exploiting Pseudomonas aeruginosa AL98 Rakh R. R., S. M. Dalvi, L. S. Raut and A. V. Manwar Research Journal of Agricultural Sciences An International Journal P-ISSN 0976-1675 E-ISSN: 2249-4538 > Volume: 13 Issue: 02 Res. Jr. of Agril. Sci. (2022) 13 415-421 inator C A Remark S Res. Jr. of Agril. Sci. (Mar-Apr 2022) 13(2): 415–421 ISSN: 0976-1675 (P) ISSN: 2249-4538 (E) Full Length Research Article # Microbiological Management of Stem Rot Disease of Groundnut Caused by Sclerotium rolfsii Sacc., by Exploiting Pseudomonas aeruginosa AL98 Rakh R. R.*1, S. M. Dalvi², L. S. Raut³ and A. V. Manwar4 Received: 13 Jan 2022 | Revised accepted: 01 Mar 2022 | Published online: 17 Mar 2022 © CARAS (Centre for Advanced Research in Agricultural Sciences) 2022 # ABSTRACT Sclerotium rolfsii Sacc. is one of the major phytopathogen of Groundnut causing Stem rot disease, which was tough to control by conventional means by applying fungicides. Therefore, in the present investigation, an effort is being made to search for effective control measures in terms of biocontrol agent for the Stem rot disease. In the present research, 58 Pseudomonas strains isolated from rhizospheric niches were screened for their biocontrol activity against S. rolfsii under in vitro conditions. One of the identified strain, Pseudomonas aeruginosa AL98 was selected for further studies because of its ability to content the mycelial growth of the pathogen significantly. During the In vitro dual culture study, the Pseudomonas aeruginosa AL98 repressed the growth of Sclerotium rolfsii up to 94.44% in comparison to control. When the mechanism behind the biocontrol revealed that Pseudomonas aeruginosa AL98 strain secreted Non-volatile diffusible metabolites, and volatile metabolites, which affects the growth of Sclerotium rolfsii in dual culture. While confirming the in vitro results, pot assay being conducted which shows decrease in the percent disease incidence of stem rot due to Pseudomonas treatment from 40.16 to 54.54%. Key words: Groundnut, Rhizospheric niches, Sclerotium rolfsii, Pseudomonas neruginosa Al.98. Non-volatile diffusible metabolites, Volatile metabolites, Microbial control Rhizospheric niches of plants is a good consortium where both kinds of microorganisms coexist i.e., phytopathogen and biocontrol agents. So, the rhizospheric niches of the plants serves as an excellent source for agents to control soil-borne plant pathogens. Various Bacterial species like *Bacillus*, *Pseudomonas*, *Serratia*, and *Arthrobacter* known to control the fungal diseases. Similarly, Bacteria present in the rhizospheric niches identified as plant growth-promoters as well as biocontrol strains which most often belong to the following genera: (i) *Bacillus spp.* [1-2], (ii) *Streptomyces spp* [3-5] and (iii) *Pseudomonas* [6-9] and *Trichoderma spp.* [10]. #### * Rakh R. R. drrrrakh@gmail.com - Department of Microbiology, Shri Guru Buddhiswami Mahavidyalaya, Purna - 431 511, Maharashtra, India - Department of Botany, Shri Guru Buddhiswami Mahavidyalaya, Purna - 431 511, Maharashtra, India - Department of Microbiology, Sant Tukaram College, Parbhani - 431 401, Maharashtra, India - Department of Microbiology, Dnyanopask College Art's, Commerce and Science, Parbhani - 431. Maharashtra, Inca The Pseudomonas spp. very well recognized as superior biocontrol agent because of their adaptive metabolism and their ability to produce a wide range of antifungal compounds [11]. Examples of antifungal and secondary metabolites produced by Pseudomonas spp. include phenazines [12], 2,4-diacetylphoroglucinol [13], pyoluteorin [14], pyrrolnitrin [15], cyclic lipopeptides [16], siderophores [17], volatile compounds [18], hydrolytic enzymes [19], and so on. Fluorescent pseudomonads, for example, Pseudomonas aeruginosa [20], Pseudomonas putida [21], and Pseudomonas fluorescens [22], are well-known to protect plants from fungal infections. Sclerotium rolfsit Sacc is a soil-borne plant pathogen of worldwide importance with it very extensive host range including more than 500 plants species. Most S. rolfsit diseases have been reported on dicotyledonous hosts, but several monocotyledonous species are also being infected. Sclerotium rolfsit is especially severe on legumes, Solanaceous crops, cucurbits, and other vegetables grown in rotation with beans [23-24]. The traditional agricultural practice used to control the phytopathogen is by applying a wide variety of Fungicides e.g., Bavistin, Captan, etc. but a severe disadvantage of the traditional method, is that it is not effective to check the Sclerotium during the cropping duration (90-100 days) and is made to provide an eco-friendly strategy for the control of Sclerotium during this work. The present research work mainly emphases to i) isolate an efficient biocontrol agent in the form of Pseudomonas spp, from rhizospheric niches of healthy plants such as Neem, groundnut, soybean etc. ii) evaluate its potential in controlling the soil-borne pathogen, Sclerotium rolfsii, causing stem rot of groundnut, iii) finding out the mechanism of biocontrol and iv) Confirmation of biocontrol of stem rot disease of groundnut caused by Sclerotium rolfsii by applying the efficient Pseudomonas spp. ### MATERIALS AND METHODS Stem rot phytopathogen of groundnut The stem rot phytopathogen of groundnut, i.e., Sclerotium rolfsii Sacc., was isolated previously during RGSTC (Rajiv Gandhi Science and Technology Commission, Government of Maharashtra) Project carried out in the Department of Microbiology, at Shri Guru Buddhiswami Mahavidyalaya, Purna (Jn.) Dist. Parbhani (Maharashtra), India. The fungal pathogen was maintained on potato Dextrose Agar medium at 30°C. Isolation of Rhizospheric Pseudomonas spp. The soil sample from rhizospheric niches of different healthy plants such as groundnut, soybean, neem, and tur, etc. was collected in poly-ethylene bags and brought to the research laboratory. A 1 gm of soil sample was inoculated into 100 ml Kings B broth and kept for incubation at room temperature for 24 h. For isolation of Pseudomonas spp. 1ml of this Kings B broth was transferred to selective enrichment media, Cetrimide broth, and kept for incubation at room temperature for 24 h. From enriched Cetrimide broth, a loopful of culture was streaked on Cetrimide agar [25] and the plates were incubated at room temperature till colonies were observed (24 - 48 h). The isolated colonies developed were then purified on nutrient agar slants and used for screening against the phytopathogen for biocontrol ability. All the isolates were tentatively named during this research to avoid confusion. Dual culture screening for potential biocontrol agents The Pseudomonas isolates were screened for potential antagonistic activity against pathogenic fungi S. rolfsii on King's B agar by means of the dual culture technique [26]. In this modified method, the King's B agar plate was inoculated with 5 mm fungal disc (7-day-old culture) 10 mm away from the center of the agar plate. Correspondingly, 24 h old Pseudomonas culture was streaked in opposite direction, 10 mm away from the center of the agar plate to maintain the equidistance of phytopathogen and antagonist from the center of the agar plate. This dual culture experiment was performed in triplicates. A control plate was maintained without streaking bacterial culture. Both the test and control plates were incubated at room temperature for 7 days. The antifungal activity was calculated by measuring the inhibition of radial mycelial growth of fungal pathogen in test as compared to control in terms of percentage inhibition of radial growth (PIRG) [27]. Percentage inhibition of radial growth = $$\frac{R_1 - R_2}{R_1} \times 100$$ Where; R1 - radius of the fungal phytopathogen colony in the control R2 - radius of the fungal phytopathogen colony in the Identification of biocontrol agent An effective Pseudomonus strain obtained after screening was identified according to Bergey's Manual of Systematic Bacteriology (1984) by using cultural, biochemical characteristics as well as 16s rRNA sequencing. Revealing of biocontrol mechanism To reveal the biocontrol mechanism, the efficient Pseudomonas isolate was analyzed for Non-volatile Metabolite and Volatile Metabolite. Screening for non-volatile metabolise For detection of non-volatile diffusible antibiotics, the experimental setup was done as per Montealegro et al. [28] with slight modification instead of PDA plates King's B plates were used. The plates covered with a cellulose nitrate membrane, were inoculated in the center with 100 µl of antagonistic bacterial suspension. After incubation for 72 hr at room temperature, the membrane with grown bacterial culture was removed, and the plate was inoculated in the center with a 5 mm disk of a pure culture of fungal pathogen and plates were further re-incubated at room temperature for 7 days and the growth of the pathogen was measured. Controls were run with uninoculated King's B plates containing plates on the cellulose nitrate membrane (replacing the bacterial suspension by sterile distilled water), and further incubated with pathogen S. rolfsii. The experiment was run in quadruplets. Results were expressed as means of % inhibition of fungal pathogens in the presence and absence of antagonistic bacterial isolate. Percent inhibition was calculated using the following formula [28]: Detection of volatile metabolites To detect the secretion of Volatile metabolites by antagonistic Pseudomonas spp., 100 µl of an antagonistic bacterial suspension was placed at the center of one-half Petri dish containing Kings B medium, and a 5 mm disk of pure culture of S. rolfsii was placed at the center of another Petri dish containing Kings B medium. Both half of plates were placed face to face preventing any physical contact between the pathogen and the bacterial suspension and were sealed to isolate the inside atmosphere and to prevent loss of volatiles formed Plates were incubated at room temperature for 6 days and the growth of the pathogen was measured and compared to controls developed in the absence of the antagonistic. The experiment was run in quadruplets. Results expressed as means of inhibition (%) of fungal growth in the presence and absence of bacterial isolate. Percent inhibition was calculated using the following formula [28]. Pot assay for biocontrol of stem rol disease (In vivo assay) Mass multiplication of pathogen The phytopathogen, Sclerotium rolfsii multiplied on sorghum grains. Sorghum grains were pre-snaked in 2 percent sucrose solution overnight, drained and boiled in fresh water for 30 minutes and drained again. This was transferred into 1000 ml flasks @ 400 g and autoclaved for 15 lb psi for 20 minutes. The flasks were allowed to cool at room temperature and direction of the antagonist colony, Similarly, the inhibition, sone of S. rolfsii under stratu is Scherofium rolfsii on PDA. Seven tuses per ruse. Similarly, the inhibition, sone of S. rolfsii under stratu is supported to the seven tuses at 28 ± 2°C [29]. inoculated with 5 mm dises of 3-to-4-day old culture of grown Scherotium rolfsii on PDA. Seven discs per flask were added Preparation pots for in vivo pot assay Soil was disinfected with formaldehyde for 3 days, after three days inoculum of *Sclerotium rolfsii*, pathogens multiplied on sorghum grains was mixed at the rate of 20g/kg of soil in upper 10 cm layer of pot soil. Pots were sprinkled with water and incubated for two days after covering with polythene bags [29]. In all three replications for each treatment were tried. The details of each treatment are as follows (Table 1). Table 1 Treatment of microbiological control in oot assay | Treatments | Description | | | |--------------|---|--|--| | Tpseudomones | Pot with phytopathogen Sclerotium rolfsii and the seeds with treatment of biocontrol agents | | | | Control | Pot with phytopathogen and the seeds without biocontrol agent treatment (Control) | | | Groundnut were cultivated for over a period of 60 days and the data on emergence of stem rot infection was recorded at 30 and 60 days. Seeds of Groundnut variety TAG24 used in this pot experiments and seed treatment with tale-based formulation of potential bacterial antagonist, *Pseudomonas* isolate was used and treated @ 10 g kg⁻¹ of the seed using gum (5 ml kg⁻¹) as sticker. The treated seeds were spread over a clean paper and dried in a cool and shady place. The seeds were sown immediately after drying. Each pot was sown with 5 seeds. The pots were watered with tap water as an when required. The growth parameters like percent seed germination, shoot length, root length, and chlorophyll content were recorded after 30 and 60 days. Percentage No. of seeds germinated You Total No. of seeds sown × 100 Percentage disease No. of infected plants × 100 Total No. of plants #### RESULTS AND DISCUSSION Isolation of Rhizospheric Pseudomonas sp. During present research work, 58 Pseudomonas sp. were isolated from rhizospheric niches of healthy plants of soybean, neem, groundnut, tur, etc. all the rhizospheric Pseudomonas were tentatively named as shown in (Table 1) and maintained on Nutrient Agar slants for further screening. Screening for potential biocontrol agents against phytopathogen During the screening, it was observed that Pseudomonas 17 was found as an efficient antagonist against Sclerotium rolfsii in the dual culture technique (Plate 1, Table 2) while the other Pseudomonas isolates found ineffective to destroy the Sclerotium rolfsii (Table 2). Table 2 In vitro screening for potential biocontrol agents against Sclerotium rolfsii | Isolate | Crop / Location | % Inhibition of
Sclerotium rolfsii | | |----------------|---------------------|---------------------------------------|--| | Pseudomonas I | Soybean/ Adgaon | 7,77 | | | Pseudomonas 2 | Soybean/ Adgaon | 11.11 | | | Pseudomonas 3 | Soybean/ Adgaon | 70.00 | | | Pseudomonas 4 | Soybean/ Adgaon | 63.33 | | | Pseudomonas 5 | Soybean/ Adgaon | 55.55 | | | Pseudomonas 6 | Soybean/ Adgaon | 52.22 | | | Pseudomonas 7 | Soybean/ Adgaon | 44,44 | | | Pseudomonas 8 | Soybean/ Adgaon | 11.11 | | | Pseudomonas 9 | Soybean/ Adgaon | 22.22 | | | Pseudomonas 10 | Soybean/ Adgaon | 7.77 | | | Pseudomonas 11 | Groundnut/ Mategaon | 12.22 | | | Pseudomonas 12 | Groundnut/ Mategaon | 18.88 | | | Pseudomonas 13 | Groundnut/ Mategaon | 16.66 warmi | | | Pseudomonas 14 | Groundnut/ Mategaon | 68,88 om | | | Pseudomonas 15 | Grandout/Mategaon | 68,88° Swami | | | Beaudowonas 16 | Sundant Matagana | 150 /30 | | Pseudomonas 16 Troundaut/ Mategaon | Pseudomonas 17 | Groundnut/ Mategaon | 94,44 | |----------------|----------------------|-------| | Pseudomonas 18 | Groundnut/ Mategaon | 14,44 | | Pseudomonas 19 | Groundnut/ Mategaon | 15.55 | | Pseudomonas 20 | Neem/Khujada | 13.33 | | Pseudomonas 21 | Neem Khujada | 22.22 | | Pseudomonas 22 | Neem Khujada | 90.00 | | Pseudomonas 23 | Neem/Khujada | 80.00 | | Pseudomonas 24 | Neem/Khujada | 27,77 | | Pseudomonas 25 | Neem/Khuiada | 57.77 | | Pseudomonas 26 | Neem/Khujada | 12.22 | | Pseudomonas 27 | Neem/Khujada | 87.77 | | Pseudomonas 28 | Neem/ Khuiada | 16.66 | | Pseudomonas 29 | Neem/Khujada | 64.44 | | Pseudomonas 30 | Tur/ Kandkheda | 30.00 | | Pseudomonas 31 | Tur/ Kandkheda | 2.22 | | Pseudomonas 32 | Tur/ Kandkheda | 56.66 | | Pseudomonas 33 | Tur/ Kandkheda | 87.77 | | Pseudomonas 34 | Tur/ Kandkheda | 72.22 | | Pseudomonas 35 | Tur/ Kandkheda | 58.88 | | Pseudomonas 36 | Tur/ Kandkheda | 40.0 | | Pseudomonas 37 | Groundnut/ Kandkheda | 27.77 | | Pseudomonas 38 | Groundnut/Kandkheda | 16.66 | | Pseudomonas 39 | Groundnut/ Kandkheda | 6.66 | | Pseudomonas 40 | Groundnut/ Kandkheda | 18.88 | | Pseudomonas 41 | Groundnut/Kandkheda | 5.66 | | Pseudomonas 42 | Groundaut/Kandkheda | 23.33 | | Pseudomonas 43 | Neem/ Mategaon | 54.44 | | Pseudomonas 44 | Neem/ Mategaon | 10.0 | | Pseudomonas 45 | Neem/ Mategaon | 28.88 | | Pseudomonas 46 | Neem/ Mategaon | 25.55 | | Pseudomonas 47 | Neem/ Mategaon | 7.77 | | Pseudomonas 48 | Neem/ Mategaon | 75.55 | | Pseudomonas 49 | Neem/ Mategaon | 74.44 | | Pseudomonas 50 | Soybean/Khujada | 70.0 | | Pseudomonas 51 | Soybean/Khujada | 56.66 | | Pseudomonas 52 | Soybean/Khujada | 52.22 | | Pseudomonas 53 | Soybean/Khujada | 22.22 | | Pseudomonas 54 | Soybean/ Khujada | 21,11 | | Pseudomonas 55 | Soyhean/Khujada | 4.44 | | Pseudomonas 56 | Soybean/Khujada | 34.44 | | Pseudomonas 57 | Groundnut/ Adgaon | 80.00 | | Pseudomonas 58 | Groundnut/ Adgaon | 12.22 | Mean of three replications Plata 1 Screening for potential biocontrol agents by dual culture technique agains 5, rolfsii It was revealed from the screening study that rhizospheric culture of Pseudomonas 17 was able to reduce in vitro growth of Sclerotium rolfsii up to 94.44%. Similarly, Singh, et al. [30] screened 186 bacterial strains of different morphological types for their biocontrol activity against S. rolfsii under in vitro conditions. Two Pseudomonas strains, namely Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N, shown to inhibit the mycelial growth of the pathogen significantly having the zone inhibition upto 15 mm by NBRI-N6 and 11 mm by NBRI-N respectively, in comparison with the other strains screened. Also, Karthikeyan et al. [31] proved that in dual culture, one among the three isolates of Trichoderma viride, an isolate in each of T. harzianum and Pseudomonas fluorescens were inhibitory to the growth of Sclerotium rolfsii (Sacc.), the causal agent of stem rot of groundnut. The isolate Tvl of T. viride caused 69.40% inhibition of the mycelial growth of the pathogen followed by P. fluorescens resulting in 64.40% inhibition. Ganesan and Gnanamanickam [32] also reported that Native strains of Pseudomonas fluorescens suppress the root and stem rot pathogen of peanut, Sclerotium rolfsii. P. fluorescens restricted the mycelial growth of S. rolfsii in in vitro plate tests. In in vitro plate assays, mycelial growth of S. rolfsii (three strains) was strongly restricted by the four strains of P. fluorescens. Clear inhibition zones ranging from 2.5 to 5.5 cm dia, were observed. Also in 2012, Ganesan and Sekar reported that six isolates of Pseudomonas showed about 68% of inhibition S, rolfsii in dual culture studies. Our results when compared with the results earlier reported by Kishore et al. [33], Karthikeyan et al. [34], Ganesan and Sekar [35] for control of Sclerotium rolfsii with Pseudomonas aeruginosa in dual culture. It was found that our results with Pseudomonas come about far better than the above-mentioned results because there was only 32-74% inhibition recorded where as in our results 94.44% inhibition of Sclerotium rolfsii was recorded. All this research indicates that rhizospheric niches contains tremendous number of different kinds of microorganisms which serves better for controlling the phytopathogen. Further the inhibitory activity of *Pseudomonas* 17 was confirmed by microscopic observation of the clear zone, which discovered lysis of mycelium of *Sclerotium rolfsii* as shown in (Plate 2). Similar findings were also recorded by Sen *et al.* [36] where the microscopic study of mycelia from interacting zone showed hyphal shriveling, deformities, swelling, fragmentation and finally resulting into lysis. These results in accordance with our findings. Plate 2 Microscopy of antagonistic effect of Pseudomonos 17 against Scierofium raifsii Identification of biocontrol agent The efficient *Pseudomonas* 17 isolate was identified by 16S rDNA gene sequencing. The sequence was aligned with sequence in the public domain, GenBank by BLAST Programm which showed 98% similarity with *Pseudomonas aeruginosa AL98* having accession number AJ249451. #### Revealing of biocontrol mechanism The biocontrol agents exercise an inhibitory effect towards the phytopathogen, Sclerotium rolfsii. Two major mechanisms have been anticipated to explain the suppressive and antagonistic effects of Pseudomonads in particular i.e., the phytopathogen is inhibited by competition for iron, as availability of Fe+++ in soil is low (10-17 M). Secondly, Pseudomonas inhibit the pathogens by producing secondary metabolites with antibiotic activity e.g., Phenazine, Pyrrolnitrin, Phenazines, 2,4-diacetylphloroglucinol and cyanides [37]. Nevertheless, growth suppression of pathogen remains a multifunctional attribute, hence for determining the mechanism of action shown by the strains under study, variety of experiments were carried out during this research work. To reveal the biocontrol mechanism, the selected strain Pseudomonas aeruginosa AL98 was scrutinized for production of Non-volatile Metabolite and Volatile Metabolite. From the results, it was evident that Pseudomonas aeruginosa AL98 was able to produce variety of secondary metabolites namely non volatile diffusible antibiotic, and volatile metabolite. | Tab | le 3 Inhibition of growth of S. r | olfsii by non-volatile metabolite | | |----------------------------|-----------------------------------|-----------------------------------|--------------------------| | Rhizospheric isolate | Fungal growth in test (mm) | Fungal growth in control (mm) | % Inhibition of pathogen | | seudomonas aeruginosa AL98 | 6.5(=1.29) | 90(±0) | 92.77(±1.43) | ± Represents standard deviation Plate 3 Action of non-volatile metabolites on growth of Sclerotium rolfsii Screening for non-volatile metabolites For screening the non-volatily metabolites, results of recorded after 7 days of incubation. Pesult display of the Pseudomonas aeruginosa 4598 was able to security for volatile diffusible metabolites and able to inhibits the Sclerotium rolfsti, 92.77% on King's B medium (Plate 3, Table 3). Several researchers reported involvement of non-volatile metabolites in inhibition of plant pathogens. Ganesan and Sekar reported contribution of non-volatile metabolites produced by P. fluorescence in inhibition of S. rolfsii. Also, Rakh et al. [36] displayed inhibition of Scierotium ralfsii by Pseudomonas cf. monteilii 9, producing non-volatile diffusible metabolites. Our results were in accordance with the results recorded earlier i.e., Pseudomonas aeruginosa AL98 produced non-volatile diffusible metabolites which inhibited S. rolfsti. All these results supported that Pseudomonas aeruginosa AL98 strains produced non-volatile metabolites which might include Tami A Pitén zine-1-carboxylic Moety phloroglucinol acid (PCA), 2,4-(2.4-DAPG), Pyoluteorin (Plt). Applin (Prn) which needs to be confirmed further. Detection of volatile metabolites After 6 days incubation period, results for volatile metabolites production by Pseudomonas aeruginosa AL98 was recorded. Pseudomonas aeruginosa AL98 secreted volatile metabolites in closed environment of petri plate which inhibited the growth of S. rolfsii, 93.88% as shown in (Plate 4, Table 4). | T | able 4 Inhibition of growth of S | | | |-----------------------------|----------------------------------|-------------------------------|--------------------------| | Rhizospheric isolate | Fungal growth in test (mnt) | Fungal growth in control (mm) | % Inhibition of pathogen | | Pseudomonas aeruginosa AL98 | 5.5(±0.57) | 90(±0) | 93.88(=0.64) | ± Represents standard deviation Plate 4 influence of volatile metabolites on the growth of S. rolfsii Volatile metabolites production by rhizosphere Pseudomonas was reported earlier by several workers [37] (Rengashwaran and Prasad 2000). Similarly, Rakh et al. [36] reported the volatile metabolite production by Pseudomonas of monteilii 9 for growth inhibition of S. rolfsii upto 100%. All the six Pseudomonas isolates used by Ganesan and Sekar [35] showed 100% inhibition of the pathogen, S. rolfsii by volatile metabolite production in paired Petri plate technique. These literature survey reveals that our results were in accordance with the results earlier reported by Rakh et al. [36], Ganesan and Sekar [35]. Our result with Pseudomonas aeruginosa AL98 looks in accordance with the above-mentioned result. These results be real promising for biocontrol of phytopathogenic fungi of groundnut. Table 5 Influence of seed bacterization with Pseudomonas aeruginosa AL98 on establishment of TAG24 groundnut in sick nots with Sclerotium rolfsii | Pots
(Day incubation) | % Sced
germination | Shoot length
in cm | Root length in
em | No. of
leaves | Chlorophyll content in mg/g | Vigour index | |--------------------------|-----------------------|-----------------------|----------------------|------------------|-----------------------------|--------------| | T Pseudomonas 30 | 86 | 17.1 | 14.6 | 123 | 0.457 | 2726.2 | | Control 10 | 40 | 11.1 | 5.0 | 16 | 0.288 | 644 | | T Pseudomonus 60 | 86 | 24.0 | 8.0 | 145 | 0.568 | 2752 | | Control 60 | 40 | 15.0 | 6.0 | 16 | 0.288 | 840 | Plate 4 Influence of volatile metabolites on the growth of S. rolfs. Plate 5 Effect of Pseudomonas aeruginosa AL98 treatment on the incidence of Stem rot in groundnut TAG24 Pot assay for biocontrol of stem rot disease (In vivo assay) Initial results of in vitro experiments revealed that, Pseudomonas aeruginosa AL 98 gifted to efficiently control tested pathogens, S. rolfsii. Hence, to further confirm and cross check the results, In vivo, experiment in pots were undertaken by artificially infested soil (sick soil) with phytopathogens, Scierotium rolfsit, causing stem rot, It was evident from Pseudomonads treated groundnut seeds showed good over all vigor as compared to control (Plate 5). The effect of Pseudomonas aeruginosa AL 98 treatment on percent seed germination, spect length, root length, no. of leaves of shifts], where P. fluorescence treated plants showed reduced chlorophyll content and vigour index were studied and the disease incident of stem rot in groundnut crop with increase in results were presented (Table 5). The percent decrease in stern rot disease incidence in groundnut TAG24 due to Pseudomonas treatment compared to the untreated check (control), ranged from 40.16 to 54.54%. ANOVA Data analysis of this treatment by Microsoft Excel 365 reveal that the Pseudomonas treatment found significant at 5% level. In pot culture experiment, pathogen alone in control showed typical stem rot symptom. Biocontrol agent Pseudomonas aeruginosa AL 98 treated plants showed reduced disease incident and showed vigorous growth and healthy looking compared with control plants. The length of the root and shoot, percent seed germination, chlorophyll content, and vigour index also increase at different level over control plant. Fig 1 Effect of P. aeruginosa AL98 treatment on incidence of Stem not in groundnut Similar observation was recorded by Ganesan and Sckar the length of the root and shoot, and fresh and dry weight of the shoot and root also increases at different level over control. Rakh et al. [36] recorded that in pot assay for control of Sclerotium rolfsii, Pseudomonas cf. monteilii 9 treated seeds showed decrease in incidence of disease up to 45.45 to 66.67% in comparison to untreated seeds. Also, Rajendraprasad et al. [29] found that the combination of seed treatment with Pseudomonas fluorescens-3 + soil application of Trichoderma harzianum -1 (T6) was effective in promoting seed germination and in reducing pre and post emergence tomato damping off caused by S. rolfsii. These findings were in accordance with our experimental findings. # CONCLUSION This biocontrol agent would be exploited as good agent for management of stem rot disease of groundnut. Also serves as good alternative for chemical fungicides which was used for control of fungal phytopathogen. #### Acknowledgement We are grateful to Dr. K. Rajkumar, Principal, Shri Guru Buddhiswami. Mahavidyalaya Purna (Jn.), for providing the necessary facilities required during this work. # LITERATURE CITED - 1. Nair JR, Singh G, Sekar V. 2002. Isolation and characterization of a novel Bacillus strain from coffee phyllosphere showing antifungal activity. Journal of Applied Microbiology. 93: 772-780. - 2. Islam S, Akanda A M, Prova A, Islam MT, Hossain MM. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology 6: 1360. - 3. Abd-Allah EF. 2001. Streptomyces plicatus as a model biocontrol agent. Folia Microbiologica (Praha) 46: 309-314. - 4. Singh SP, Gaur R. 2017. Endophytic Streptomyces spp, underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea, Biological Control 104: 44-56. - 5. Jacob S, Sajjalaguddam RR, Sudini HK. 2018. Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. Journal of Integrative Agriculture 17(4): 892-900. - 6. Mark GL, Morrissey JP, Higgins P, O'Gara F. 2006. Molecular-based strategies to exploit Pseudomonus biocontrol strains for environmental biotechnology applications. FEMS Microbiology Ecology 56: 167-177. - 7. Upadhyay A, Srivastava S. 2011. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiological Research 166(4): 323-335. - 8. Ganesan S, Sekar R. 2012. Fluorescent Pseudomonas as plant growth promoting rhizobacteria and biocontrol agents in groundnut crop (Arachis hypogaea L.). International Journal of Applied Bio Research 12: 1-6. - 9. Oni FE, Olorunleke OF, Höfte M. 2019. Phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a are involved in the biological control of Pythium myriotylum on cocoyam (Xanthosoma sagittifolium). Biological Control 129: 109-114. - 10. Hirpara DG, Gajera HP, Hirpara HZ, Golakiya BA. 2017. Antipathy of Trichoderma against Selectium rolfsii Sacc.: evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. Journal of Molecular Microbiology and Biotechnology 27(1): 22-28. - 11. Trivedi P, Pandey A, Palni L M S. 2008. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol. Research 163: 329-336, - 12. Hu W, Gao Q, Hamada MS, Dawood DH, Zheng J, Chen Y, Ma Z. 2014. Potential of Pseudomonus chlororaphis subsp aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104: 1289-1297. - 13. Zhang Q, Ji Y, Xiao Q, Chng S, Tong Y, Chen X, Liu F. 2016. Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6, Microbiol. Research 188/189: 106-112. - 14. Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y. 2011. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12: 1-17. - 15. Wu X, Chi X, Wang Y, Zhang K, Kai L, He Q. 2019. vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05. The Plant Pathology Journal 35; 351-361. - 16. Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P. 2015. Nouribosomal peptides. key biocontrol components for Pseudomonus fluorescens In5, isolated from a Greenlandic suppressive soil. MBio 6(2): e00079- - 17. Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A. 2014. Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. Jr. Basic Microbiology 54: 418-424. - 18. Mannaa M, Oh JY, Kim KD. 2017. Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology 45(3): 213-219. - 19. Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK. 2014. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology 54(6): 585-597. - 20. Fatima S, Anjum T. 2017. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Science 8: 1-14. - 21. Ge Y, Chen L, Wang L, Su H, Zhou J, Cheng X. 2008. Effects of insertional inactivation of gacS gene on two secondary metabolites in Pseudomonas chlororaphis G05. Acta. Microbiol. Sinica 48: 1595-1601. - 22. Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y. 2018. Pyrrolnitrin is more essentia: than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium gramineaeum. Microbiol. Research 215: - 23. Tu JC, 1978. Production of soybean from severe root rot by Rhizobium. Physiol. Plant Pathology 12: 233-240. - 24. Wydra K. 1996. Collection and determination of part and stem rot pathogens. Annuals Report ITTA, Ibadan, Nigeria, pp 68. - 25. Brown VI, Low tulk II 1965. Use of the proved certainide agar medium and other culture methods for Pseudomonas aeruginosa V. Chn. Pathology 18: 7 - Raut LS, Rakh RR, Hamde VS. 2021. In vitro biocontrol scenarios of Bacillus amyloliquefaciens subsp. amyloliquefaciens strain RLS19 in response to Alternaria macrospora, an Alternaria leaf spot phytopathogen of Bt cotton. Journal of Applied Biology and Biotechnology 9(1): 75-82. - 27. Hillocks RJ. 1991. Alternaria leaf spot of cotton with special reference to Zimbabwe. Trop Pest Management 37: 124-128. - Montealegre JR, Reyes R, Pérez LM, Herrera R, Silva P, Besoain X. 2003. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology 6(2): 115-127. - Rajendraprasad M, Sagar BV, Devi GU, Rao SK. 2017. Biological control of tomato damping off caused by Sclerotium rolfsti. Jr. Entomol. Zool. Studies 5(5): 113-119. - Singh A, Mehta S, Singh HB, Nautiyal CS. 2003. Biocontrol of collar rot disease of betelvine (Piper hetle L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Current Microbiology 47(2): 0153-0158. - Karthikeyan V, Sankaralingam A, Nakkeeran S. 2006. Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.). Archives of Phytopathology and Plant Protection 39(3): 239-246. - Ganesan P, Gnanamanickam SS. 1987. Biological control of Scientium rolfsii Sacc. in peanut by inoculation with Pseudomonas fluorescens. Soil Biology and Biochemistry 19(1): 35-38. - Kishore GK, Pande S, Podile AR. 2005. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Can. Jr. Microbiology 51(2): 123-132. - Mavrodi DV, Blankenfeldt W, Thomashow LS. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathology 44: 417-445. - Park JY, Kang BR, Ryu CM, Anderson AJ, Kim YC. 2018. Polyamine is a critical determinant of Pseudomonas chlororaphis. O6 for GacS-dependent bacterial cell growth and biocontrol capacity. Mol. Plant Pathology 19: 1257-1266. - Rakh RR, Raut LS, Dalvi SM, Manwar AV. 2011. Biological control of Sclerotium rolfsii. causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Recent Research in Science and Technology 3(3): 26-34. - 37. Rangeshwaran R, Prasad RD. 2000. Biological control of Sclerotium rot of sunflower. Indian Phytopathology 53: 444-449. Estd. 19 PRINCIPAL nri Guru Buddhiswami Mahavidyalaya Purna (Jn.) Dist.Parbhani Co-ordinator