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1. INTRODUCTION

CONTRACTION MAPPING ON A BANACH SPACE:

Let X be a Banach space and let F : X -+ X then we saythat F is a contraction mapping if for all a,b e X such that

llr(a)- F(b)ll < alla- bll (1 1)

whereaissomeconstants.t.0 < u I 1.A"contractionmapping"drawsbetweenanytwocloserpoints.

EXAMPLE :

Let X = a(10,L/21) with the suprermu.rn norm and

F(h)(t) =

then for allt el0,l/2)andh,k eX , we have

lF(h)(o- F(rcxr)l = |f;r,,-oll = f,ltn-kll- =fllh-kll- =ittn-kll-.
Because this inequality holds for all t e l0,I/2) then clearly we have ,

llF(h) - F (k)llo 
= i ttn -kll*,

Hence, F is a conkaction mapping with constant a, = 7/2.

THEOREM (THE CONTRACTION MAPPING PRINCIPLE)

Let X be a Banach space on which F is a contraction mapping. Then there is unique fixed point of F in X, i.e.,.there

exists one and only one solution ofthe equation

a = F(a),forae X

2. APPLICATION TO DIFFERENTIAL EQUATIONS

Consider the general equation offirst order

y'(s) = /(s, y(s)), (t 2)

function of two variables. For example, + s'y'then the diflerential equation is y'(s) =

initial condition y(ss) - yo. We have which satisfies the differential equation with

[ss, s6 * o) and differentiable on the openion. The function is continuous and

i
I h(v)dv

J

:o)0

where /(s, y)

s * sy2(s

given\ipj
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solution, even if the solr-rtion cannot be written down in closed forrn.

We will consider only functions /(s,y) which satis$ the following property : It is require that f will be

differentiable in y and

lffr',rtl< c (1.3)

For all s in some interval [s,so *o] and all y in [yo - oz,!.o * oz], where o, and o, are some positive constants. The

constant C must be independent of s and y. The simple condition in which this is guaranteed is that#(s, y) is continuous for

(s, y) e [ss, se * or] x lyo - oz ,!O * or] since a continuous function is bounded on a compact set. By considering these

conditions we can prove, Existence-Uniqueness theorem for first order nonlinear differential equations which is given below.

Existence-Uniqueness Theorem: Consider the function f(s,y) be continuous and satisfu the bound (1.3). Then the

differential equation (1.2) with initial condition y(so) - yo has a unique solution which is continuous on some interval

[so,so * o] and differentiable (so,so * o), where o ) 0.

Now we prove this above theorem for third order nonlinear ordinary differential equations.

3. EXISTENCE-UNIQUENESS THEOREM

Consider the function f (s,y,y' ,y") is continuous and satisffing the bound

l#(', y,y',y')l< c (1.3*).

Then the dift'erential equation

y"' (s) = f (s, y(s),y' (s), y"(s))

with initial conditions y(so) = yo , y'(so) : !'o , (,: )

y"(so) = !o"
has a unique solution which is continuous on some interval [sq, se t a] and difierentiabf'e (so, so * o), where o ) 0.

PROOF OF EXISTENCE-UNISUENESS THEOREM

We first rewrite the given differential equation in the form of an integral eflation. Note that if y"(s)

for so <.s ( so * o, then (s,y(s),y'(s),y"(s) ) is continuous, hence y"(s) = /(s,y(s),y'(s),y"(s))
continuous for so ( s ( so * or. To get result we can integrate both sides of differential equation in (1.2*)

u = s ( so * o, andthen applying theFundarnental Theorem of Calculustoestirrrate

y"(s) : yo" * Il"f (",y"@))du. (l 4)

Conversely, any solution of equation (1.4) which is continuous is also a solution of the original differential equation (1 .2*),

the right hand side of equation (4.4) must be differentiable in s since by the Fundamental Theorern of Calculus and hence we

can differentiating both sides of equation (l.4) with respect to s to obtain differential equation. Also, putting s = so in the

equation (1.4) gives y"(so) = !o".Any differentiable solution y"(s) to (1.2*) with initia[ condition y"(so) - yo" is

necessarily a continuous solution to equation (1.4) and vice-versa. Now we will prove that there exists a unique continuous

solution to equation (1.4) on some interval so < s < s0 + o.

Let us consider proof of the theorem as a simple special case, to get the follorving idea. Consider that the bound

the Mean

is continuous

must also be

foru = .so to

froml,';wt" ",,,,i:,,,i,,).,,- ^"in

C$-Of$tnerPr d:f(u,rrt-d'

shdGunradsiffihrffilf THir

lwo real numbers r, and r,
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For some v between r, and rr.

On taking the modulus values of both sides of the above equation and using the bound ( I .3 *) proves that

l0'f(u,rr) - 02 f(u,rz)l < C lr, - rrl (1.5)

for real numbers rr,rrand all ue [so, so t or]

We defined an operator F(y) on C([s6,s, + or]) by

F(y)(s) : !0" + t,f@,y"(u))du
By the fundamental theorem of calculus, F really does turn continuous functions into continuous in fact, differentiable

functions. The discussion shows the equivalence ofequations (1.2) and (1.4) any fixed point for F gives a solution of

y"'(s):.f(s,y(s),y'(s),y"(s))withy"(so) = !o".Nowwewillprovetheexistenceofthis fixedpoint'

By taking use of equation (1.5) we can obtain, for any two functions y, and y, in

C([so,so + o1]) . we have

lF(y,)(s) - F(yr)(s)l = ll',,f (",yr(")) - f (u, vr(fi)du

< Jl"f (",v,(u)) - f (",v,(d)du

< c [: lvr@) - v2@)ldu (bv equation (4'5))

< clly, - yrly* I'odu

= cllYr - lrll. (s -so)

Wechoosesclose tososuchthat,rvegetC(s-so) < lthatis,s ( so + |,tnenFbecomeacontractionmapping'Iflet

usconsider o: min(6t,;)and I= [so,So* o].TheoperatorFonC(l)ispcontractionandthusequation(1.4)musthave

a unique fixed point y"(s).

The fundamental theorem of calculus shows that the right hand side of equation (1.4) is differentiable in s, thus y"(s) is also

derivable. As substituting s : so in the integral equation, it is easily observed that y"(so) = !o" and then differentiating

both sides proves that y"'(s) : f (s,y(s),y'(s),y"(s)). If the bound (1.3x) holds for all y,this completes the proof the

theorem.

EXAMPLE:

Now we apply the above theorem to the differential equation

y"'(s) = s2 + sya(s) with initialcondition y"(0) : 2

Here we compute,

af . 1

il=4sY";
u,; _ .t^^.2
i/ - tztY

o3f _.n
a# - Lasy ; which is continuous for all s and y

and therefore it is bounded by a constant on any compact form 0 ( s ( 6r,2-o, < y < 2 * or.For

exanrple, by taking or j 6z : 1 and therefbre we ha di fferential equation satisfi es the conditions

of above this differential equation fors € (0,o), for sorne o > 0, with

initial conditioii a-
- ---sug*r,,mxffihara,rdr*,

Qsry;'
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4. CONCLUSION
In the above result, we proved differential equation has a solution on some interval is said
opposite to a global existence result in which the differential equation has a solution for all

to be a local existence result, this is

time.
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